中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

kaempferol 3 o sophoroside/crocus

鏈接已保存到剪貼板
文章臨床試驗專利權
11 結果
Intact Crocus sativus petals were studied for the first time by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, revealing the presence of kinsenoside (2) and goodyeroside A (3), together with 3-hydroxy-γ-butyrolactone (4). These findings were confirmed by
A liquid chromatography-(quadrupole-time of flight)-mass spectrometry methodology was developed to assess the authenticity of saffron through the analysis of a group of kaempferol derivatives recently proposed as novel authenticity markers as a result of a metabolomic study of saffron (kaempferol
During saffron (Crocus sativus) spice production, large amounts of floral biowaste are generated. It was the aim of this study to develop a value-added product from saffron floral biowaste to be used as a natural cosmetic ingredient. HPLC-PDA-MS analysis of saffron flower extracts revealed the
The cultivation of Crocus sativus L. is valued for its dried stigmas, but the rest of the parts of its flowers are increasingly important. Saffron flowers (SF) are natural sources of antioxidant compounds. Kaempferols and anthocyanins are the main compounds of the high-phenolic content of SF. This
Saffron crocus (Crocus sativus L.) has been widely grown in Iran. Its stigma is considered as the most valuable spice for which several pharmacological activities have been reported in preclinical and clinical studies, the antidepressant effect being the most thoroughly studied and confirmed. This
A high-performance liquid chromatography with photodiode array detection method (HPLC-DAD) was validated for the analysis of floral bioresidues obtained in saffron spice production by using three different solvent mixtures [water/hydrochloric acid (HCl) (100:1, v/v),
In the present study, an integrated approach combining HPLC/DAD, GC/MS, near infrared (NIR) spectroscopy, and chemometrics was used to geographically discriminate saffron samples from Iran and China. Chinese and Iranian samples can be well-separated based on HPLC data analysed by a principal
Saffron (Crocus sativus L.) by-products considered as a cheap source of bioactive polyphenolics endowed with potential antioxidant effects. The saffron biowaste utilized for extraction of flavonoid glycosides and their potential biological properties. The total amount of polyphenolics and
The dehydration process is a prerequisite to preserve saffron for a long time. According to this process, saffron shows differences in the main compounds responsible for its quality (colour, taste, aroma, and flavonol content). At present, the freeze-drying method obtains dried products with the

Metabolomic fingerprinting of saffron by LC/MS: novel authenticity markers.

只有註冊用戶可以翻譯文章
登陸註冊
An untargeted metabolomic approach using liquid chromatography coupled to electrospray ionization time-of-flight mass spectrometry was developed in this work to identify novel markers for saffron authenticity which is an important matter related to consumer protection, quality assurance, active
UGT707B1 is a new glucosyltransferase isolated from saffron (Crocus sativus) that localizes to the cytoplasm and the nucleus of stigma and tepal cells. UGT707B1 transcripts were detected in the stigma tissue of all the Crocus species analyzed, but expression analysis of UGT707B1 in tepals revealed
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge