中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

lignin/nicotiana

鏈接已保存到剪貼板
文章臨床試驗專利權
頁 1 從 86 結果
MicroRNA (miRNA)-mediated post-transcriptional regulation plays a vital role in the response of plants to pathogens. Although the microRNA397 family has been implicated in physiological processes as an important regulator, little is known about its function in the resistance of plants to pathogens.
The manipulation of lignin could, in principle, facilitate efficient biofuel production from plant biomass. Despite intensive study of the lignin pathway, uncertainty exists about the enzyme catalyzing the last step in syringyl (S) monolignol biosynthesis, the reduction of sinapaldehyde to sinapyl
Lignin is an important component of secondarily thickened cell walls. Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) are two key enzymes that catalyse the penultimate and last steps in the biosynthesis of the monolignols. Downregulation of CCR in tobacco (Nicotiana tabacum)
Plant peroxidases play a major role in lignin formation and wound healing and are believed to be involved in auxin catabolism and defense to pathogen attack. The function of the anionic peroxidase isozymes is best understood in tobacco. These isozymes catalyze the formation of the lignin polymer and
The physiological role of the Norway spruce [ Picea abies (L.) Karst.] spi 2 gene, encoding a defense-related cationic peroxidase was examined in transgenic tobacco (Nicotiana tabacum L.). Expression of spi 2, under control of the 35S promoter, in tobacco plants resulted in higher total peroxidase
Inhibition of specific lignin biosynthetic steps by antisense strategy has previously been shown to alter lignin content and/or structure. In this work, homozygous tobacco (Nicotiana tabacum) lines transformed with cinnamoyl-coenzyme A reductase (CCR) or caffeic acid/5-hydroxy ferulic
Three commonly employed methods for lignin determination, i.e., the thioglycolic acid (TGA), the acetylbromide (AB), and the acid detergent fiber (ADF) method, were compared using leaves and xylem tissue from five species (Nicotiana tabacum, Populus x canescens, Fagus sylvatica, Quercus robur, and
Xylem from stems of genetically manipulated tobacco plants which had had cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) activity down-regulated to a greater or lesser degree (clones 37 and 49, respectively) by the insertion of antisense CAD cDNA had similar, or slightly higher, lignin contents
Lignin, a natural macromolecular compound, plays an important role in the texture and taste of fruit. Hard end is a physiological disorder of pear fruit, in which the level of lignification in fruit tissues is dramatically elevated. Cinnamyl alcohol dehydrogenase and expansin genes (PpCAD2 and
Transgenic tobacco (Nicotiana tabacum L.) plants in which the activity of 4-coumarate:coenzyme A ligase is very low contain a novel lignin in their xylem. Details of changes in hydroxycinnamic acids bound to cell walls and in the structure of the novel lignin were identified by base hydrolysis,

Protein-protein and protein-membrane associations in the lignin pathway.

只有註冊用戶可以翻譯文章
登陸註冊
Supramolecular organization of enzymes is proposed to orchestrate metabolic complexity and help channel intermediates in different pathways. Phenylpropanoid metabolism has to direct up to 30% of the carbon fixed by plants to the biosynthesis of lignin precursors. Effective coupling of the enzymes in
Gibberellins (GAs) are involved in regulation of many aspects during plant development. To investigate the impact of altered GA levels on plant growth and metabolism, transgenic tobacco (Nicotiana tabacum) plants have been engineered to express either a GA20-oxidase (AtGA20-ox) or a GA2-oxidase
We analyzed lignin content and composition in transgenic tobacco (Nicotiana tabacum) lines altered in the expression of the early phenylpropanoid biosynthetic enzymes L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase (C4H). The reduction of C4H activity by antisense expression or sense
In a transcriptomic screen of Manduca sexta-induced N-acyltransferases in leaves of Nicotiana attenuata, we identified an N-acyltransferase gene sharing a high similarity with the tobacco lignin-biosynthetic hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) gene whose
Class III plant peroxidases (Prxs) are involved in the oxidative polymerization of lignins. Zinnia elegans Jacq. Basic peroxidase (ZePrx) has been previously characterized as capable of catalyzing this reaction in vitro and the role in lignin biosynthesis of several of its
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge