中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

magnolia/obesity

鏈接已保存到剪貼板
文章臨床試驗專利權
15 結果
Obesity is caused by a combination of both genetic and environmental risks. Disruption in energy balance is one of these risk factors. In the present study, the preventive effect on high-fat diet- (HFD-) induced obesity and insulin resistance in mice by Magnolia bioactive constituent
In obesity, cardiac insulin resistance is a putative cause of cardiac hypertrophy and dysfunction. In our previous study, we observed that Magnolia extract BL153 attenuated high-fat-diet (HFD)-induced cardiac pathogenic changes. In this study, we further investigated the protective effects of the
Accumulating evidence demonstrated that obesity is a risk factor for renal structural and functional changes, leading to the end-stage renal disease which imposes a heavy economic burden on the community. However, no effective therapeutic method for obesity-associated kidney disease is available. In
Magnolia as an herbal material obtained from Magnolia officinalis has been found to play an important role in anti-inflammation, antioxidative stress, and antiapoptosis. This study was designed to investigate the effect of Magnolia extract (BL153) on obesity-associated lipid accumulation,
Diabetic complications are the major cause of mortality for the patients with diabetes. Oxidative stress and inflammation have been recognized as important contributors for the development of many diabetic complications, such as diabetic nephropathy, hepatopathy, cardiomyopathy, and other
Protein tyrosine phosphatase 1B (PTP1B) is an established therapeutic target for type 2 diabetes mellitus (T2DM) and obesity. The aim of this study was to investigate the inhibitory activity of Magnolia officinalis extract (ME) on PTP1B and its anti-T2DM effects. Inhibition assays and inhibition
BACKGROUND The prevalence of obesity is surging in an alarming rate all over the world. Pharmaceutical drugs are considered potential adjunctive therapy to lifestyle modification. However, for most, besides being too expensive, their long term usages are hindered by their severe adverse effects.
We investigated the effect of magnolol (5,5'-diallyl-2,2'-dihydroxybiphenyl), a marker compound isolated from the cortex of Magnolia officinalis, in non-obese type 2 diabetic Goto-Kakizaki (GK) rats. The rats were treated orally with magnolol (100 mg/kg body weight) once a day for 13 weeks. In

Potential lipase inhibitors from Chinese medicinal herbs.

只有註冊用戶可以翻譯文章
登陸註冊
BACKGROUND Obesity has become a major health concern, and it places both personal and economic burdens on the world's population. Traditional Chinese medicinal herbs are rich source of lead compounds and are possible drug candidates, which may be used to treat this condition. OBJECTIVE This study
BACKGROUND Recent research has established correlations between stress, anxiety, insomnia and excess body weight and these correlations have significant implications for health. This study measured the effects of a proprietary blend of extracts of Magnolia officinalis and Phellodendron amurense
OBJECTIVE To determine the efficacy of a dietary supplement ingredient containing proprietary extracts of Magnolia officinalis and Phellodendron amurense in helping overweight, otherwise healthy, premenopausal female adults, who typically eat more in stressful situations manage their body
Leptin, a major adipocytokine produced by adipocytes, is emerging as a key molecule linking obesity with breast cancer therefore, it is important to find effective strategies to antagonize oncogenic effects of leptin to disrupt obesity-cancer axis. Here, we examine the potential of honokiol (HNK), a
Obesity greatly influences risk, progression and prognosis of breast cancer. As molecular effects of obesity are largely mediated by adipocytokine leptin, finding effective novel strategies to antagonize neoplastic effects of leptin is desirable to disrupt obesity-cancer axis. Present study is
Background. Obesity and its comorbidities continue to challenge the world at an alarming rate. Although the long term solution lies on lifestyle changes in the form of dieting and exercising, drug, medical food, or dietary supplement interventions are required for those who are already obese. Here
Adipose tissue plays an essential role in energy homeostasis as a metabolic and endocrine organ. Accordingly, adipocytes are emerging as a major drug target for obesity and obesity-mediated metabolic syndrome. Dysfunction of enlarged adipocytes in obesity is involved in obesity-mediated metabolic
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge