頁 1 從 264 結果
Relapsing-remitting multiple sclerosis (RRMS) is the most prevalent course of multiple sclerosis. It is an autoimmune inflammatory disease of the central nervous system. To investigate the gender-specific involvement of microRNAs (miRNAs) in RRMS pathogenesis, we compared miRNA profiles in
The levels of the antioxidants ascorbic acid, cysteine, reduced glutathione and alpha-tocopherol, of the free-radical marker uric acid and of the amino acids tyrosine and tryptophan were measured by means of high-pressure liquid chromatography in plaques, adjacent white matter and distant white
Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication and their function as relay points for signaling pathways. They have a key role in numerous processes that control cellular proliferation and differentiation, regulate
The goal of this work is to determine the role of the autoimmune cells in multiple sclerosis (MS) induction and the immunomodulatory mechanism of therapy with tyrosine kinase inhibitors (TKIs) in MS attenuation. Samples (5 × 10(5) cells per well) of C6 and primary rat astrocytes were stimulated with
In this study, we investigate the role of the C-->G mutation in position 77 of exon 4 of the protein tyrosine phosphatase receptor-type C (PTPRC) gene, coding for the CD45 molecule, for the development of multiple sclerosis (MS) in an Italian continental population. The PTPRC mutated genotype has
Multiple sclerosis (MS) is a common cause of neurological disability in young adults. The disease generally manifests in early to middle adulthood and causes various neurological deficits. Autoreactive T lymphocytes and their associated antigens have long been presumed important features of MS
Introduction: B cells have increasingly come under the spotlight as mediators of inflammatory central nervous system (CNS) demyelinating diseases such as multiple sclerosis (MS). B cell depletion via the targeting of the surface molecule CD20 has proven to be highly effective,
Large demyelinating inflammatory central nervous system (CNS) lesions may present with contrast enhancement on magnetic resonance imaging and may mimic CNS tumors such as glioma. In ambiguous cases, new diagnostic tools that may be helpful for distinguishing between demyelinating inflammatory and
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system, and its pathogenesis remains largely unclear. Much attention has been paid to the role of microRNAs (miRs) in regulation of autoimmune disease. Here, we found, for the first time, that miR-448
The tyrosine kinase 2 variant rs34536443 has been established as a genetic risk factor for multiple sclerosis in a variety of populations. However, the functional effect of this variant on disease pathogenesis remains unclear. This study replicated the genetic association of tyrosine kinase 2 with
Sympathoadrenergic mechanisms may play a role in multiple sclerosis (MS). We examined catecholamine (CA) levels and production and tyrosine hydroxylase (TH) expression in peripheral blood mononuclear cells (PBMCs) from MS patients, and the correlation between CA production and apoptosis in PBMCs.
Multiple sclerosis (MS) is a debilitating, chronic demyelinating disease of the central nervous system affecting over 2 million people worldwide. The TAM family of receptor tyrosine kinases (TYRO3, AXL and MERTK) have been implicated as important players during demyelination in both animal models of
Multiple sclerosis is a disease that is characterized by inflammation, demyelination, and axonal damage; it ultimately forms gliotic scars and lesions that severely compromise the function of the central nervous system. Evidence has shown previously that altered growth factor receptor signaling
Multiple sclerosis is an autoimmune disease of the central nervous system characterized by neuroinflammation and demyelination. Although considered a T cell-mediated disease, multiple sclerosis involves the activation of both adaptive and innate immune cells, as well as resident cells of the central
The 620W allele of PTPN22 has been associated with susceptibility to several different forms of chronic inflammatory disease, including Type 1 diabetes (T1D), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and autoimmune thyroiditis (AIT). We set out to explore its possible role in