頁 1 從 69 結果
Oxidative stress is associated with skeletal muscle fatigue. This study tests the hypotheses that N-acetylcysteine (NAC) reduces fatigue and accelerates recovery of the rat external anal sphincter (EAS). Fifteen female Wistar rats were killed humanely. The EAS was mounted as a ring preparation and
Respiratory muscle fatigue (RMF) occurs during heavy exercise in humans. N-acetylcysteine (NAC) infusion has been shown to reduce RMF, suggesting that oxidative stress is a contributing factor. The purpose of the present study was to determine the effect of an acute oral dose of NAC on RMF during
The accumulation of reactive oxygen species (ROS) is associated with muscular fatigue. The antioxidant N-acetylcysteine (NAC) can extend time to fatigue (TTF), but the effect appears to be exercise intensity dependent. The purpose of this study was to determine the effects of an acute oral dose of
OBJECTIVE
In the present study, we tested the hypothesis whether N-acetylcysteine (NAC), a non-specific antioxidant, might influence fatigue by modulating Ca2+-handling capacity by the sarcoplasmic reticulum (SR).
METHODS
In the presence (10 mm) or absence of NAC, bundles of rat diaphragm were
Infusion of the antioxidant N-acetylcysteine (NAC) reduces fatigability in electrically evoked human muscle contraction, but due to reported adverse reactions, no studies have investigated NAC infusion effects during voluntary exercise in humans. We investigated whether a modified NAC-infusion
BACKGROUND
This biomechanical study evaluates the effect of N-acetylcysteine alone and in combination with the most commonly used antibiotic-loaded bone cement mixtures.
METHODS
We mixed eight bone cement mixture groups including combinations of N-acetylcysteine, gentamicin, teicoplanin, and
Production of reactive oxygen species (ROS) during contractions is associated with muscular fatigue and damage in the short-term and adaptive responses in the long-term. When adaptation is inconsequential acute antioxidant supplementation may be able to attenuate muscle fatigue and damage to enhance
N-acetylcysteine (NAC) is a nonspecific antioxidant that selectively inhibits acute fatigue of rodent skeletal muscle stimulated at low (but not high) tetanic frequencies and that decreases contractile function of unfatigued muscle in a dose-dependent manner. The present experiments test the
Fatigue of hand and forearm muscle groups can limit task performance by astronauts wearing space suits. Countermeasures to delay fatigue would therefore be useful to the space program. N-acetylcysteine (NAC) has been shown to inhibit fatigue during other tasks so we tested its effects during
The production of reactive oxygen species in skeletal muscle is linked with muscle fatigue. This study investigated whether the antioxidant compound N-acetylcysteine (NAC) augments time to fatigue during prolonged, submaximal cycling exercise. Seven men completed a double-blind, crossover study,
The production of reactive oxygen species in skeletal muscle is linked with muscle fatigue. This study investigated the effects of the antioxidant compound N-acetylcysteine (NAC) on muscle cysteine, cystine, and glutathione and on time to fatigue during prolonged, submaximal exercise in endurance
Reactive oxygen species (ROS) have been linked with both depressed Na(+),K(+)-pump activity and skeletal muscle fatigue. This study investigated N-acetylcysteine (NAC) effects on muscle Na(+),K(+)-pump activity and potassium (K(+)) regulation during prolonged, submaximal endurance exercise. Eight
The aim of this study is to detect the effects of C60 fullerenes, which possess pronounced antioxidant properties, in comparison with the actions of the known exogenous antioxidants N-acetylcysteine (NAC) and β-Alanine in terms of exercise tolerance and contractile property changes of the m. triceps
It has recently been postulated that diaphragm fatigue may be due, at least in part, to a form of low-grade injury to subcellular organelles. Moreover, several studies have shown that thiol-containing compounds can protect cardiac and striated skeletal muscle organelles from the deleterious effects
We have previously shown that antioxidant enzymes (superoxide dismutase and catalase) depress contractility of unfatigued diaphragm fiber bundles and inhibit development of acute fatigue. In the present study, we tested for similar effects of N-acetyl-cysteine (NAC), a nonspecific antioxidant