中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

pentose/seizures

鏈接已保存到剪貼板
文章臨床試驗專利權
13 結果

Hexose and pentose phosphates in brain during convulsions.

只有註冊用戶可以翻譯文章
登陸註冊
Inhibition of glycolytic metabolism may provide a new therapy for refractory epilepsy. Fructose-1,6-diphosphate (FDP), which inhibits glycolysis and diverts glucose into the pentose phosphate pathway, has strong inhibitory action on seizures induced by chemical convulsants. Here, we investigated the
A variety of observations suggest that decreasing glycolysis and increasing levels of reduced glutathione, generated by metabolism of glucose through the pentose phosphate pathway, would have an anticonvulsant effect. Because fructose-1,6-bisphosphate (F1,6BP) shifts the metabolism of glucose from
TP53-induced glycolysis and apoptosis regulator (TIGAR) activates the pentose phosphate pathway (PPP), which feeds reduced nicotinamide adenine dinucleotide phosphate (NADPH) to the antioxidant glutathione pathway. Oxidative stress-induced neuronal apoptosis is the pathological basis of several
Epilepsy is a disorder that affects around 1% of the population. Approximately one third of patients do not respond to anti-convulsant drugs treatment. To understand the underlying biological processes involved in drug resistant epilepsy (DRE), a combination of proteomics strategies was used to

Possible mechanisms for the anticonvulsant activity of fructose-1,6-diphosphate.

只有註冊用戶可以翻譯文章
登陸註冊
Fructose-1,6-diphosphate (FDP), an intracellular metabolite of glucose, has anticonvulsant activity in several models of acute seizures in laboratory animals. The anticonvulsant effect of FDP is most likely due to a direct effect since intraperitoneal and oral administration results in significant
Until now oxygen was thought to be the leading factor of hypoxic conditions. Whereas now it appears that insulin is the key regulator of hypoxic conditions. Insulin seems to regulate the redox state of the organism and to determine the breakpoint of human breath-holding. This new hypoxia-insulin
Medium chain triglycerides (MCTs) are used to treat neurologic disorders with metabolic impairments, including childhood epilepsy and early Alzheimer's disease. However, the metabolic effects of MCTs in the brain are still unclear. Here, we studied the effects of feeding even and uneven MCTs on
Fructose-1,6-diphosphate (FDP) shifts the metabolism of glucose from glycolysis to the pentose phosphate pathway and has anticonvulsant activity in several acute seizure animal models. In the present study, we investigated the anti-epileptogenic effects of FDP in an amygdaloid-kindling seizure

Anticonvulsant and proconvulsant actions of 2-deoxy-D-glucose.

只有註冊用戶可以翻譯文章
登陸註冊
OBJECTIVE 2-Deoxy-D-glucose (2-DG), a glucose analog that accumulates in cells and interferes with carbohydrate metabolism by inhibiting glycolytic enzymes, has anticonvulsant actions. Recognizing that severe glucose deprivation can induce seizures, we sought to determine whether acute treatment
Manipulation of metabolic pathways (e.g., ketogenic diet (KD), glycolytic inhibition) alters neural excitability and represents a novel strategy for treatment of drug-refractory seizures. We have previously shown that inhibition of glycolysis suppresses epileptiform activity in hippocampal slices.
OBJECTIVE Glucose is the major energy substrate of the brain and crucial for normal brain function. In diabetes, the brain is subject to episodes of hypo- and hyperglycemia resulting in acute outcomes ranging from confusion to seizures, while chronic metabolic dysregulation puts patients at
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge