中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

physcomitrella patens/dental caries

鏈接已保存到剪貼板
文章臨床試驗專利權
7 結果

Stomata and Sporophytes of the Model Moss Physcomitrium patens

只有註冊用戶可以翻譯文章
登陸註冊
Mosses are an ancient land plant lineage and are therefore important in studying the evolution of plant developmental processes. Here, we describe stomatal development in the model moss species Physcomitrium patens (previously known as Physcomitrella patens) over the duration of
CONCLUSIONS A set of PpKAI2 - LIKE paralogs that may encode strigolactone receptors in Physcomitrella patens were identified through evolutionary, structural, and transcriptional analyses, suggesting that strigolactone perception may have evolved independently in basal land plants in a similar
PpCHS is a member of the type III polyketide synthase family and catalyses the synthesis of the flavonoid precursor naringenin chalcone from p-coumaroyl-CoA. Recent research reports the production of pyrone derivatives using either hexanoyl-CoA or butyryl-CoA as starter molecule. The Cys-His-Asn
In plants, oxylipins regulate developmental processes and defense responses. The first specific step in the biosynthesis of the cyclopentanone class of oxylipins is catalyzed by allene oxide cyclase (AOC) that forms cis(+)-12-oxo-phytodienoic acid. The moss Physcomitrella patens has two AOCs (PpAOC1
The non-specific lipid transfer proteins (nsLTPs) are characterized by a compact structure with a central hydrophobic cavity very suitable for binding hydrophobic ligands, such as lipids. The nsLTPs are encoded by large gene families in all land plant lineages, but seem to be absent from green
The plant type III polyketide synthases (PKSs), which produce diverse secondary metabolites with different biological activities, have successfully co-evolved with land plants. To gain insight into the roles that ancestral type III PKSs played during the early evolution of land plants, we cloned and
Lower plant species including some green algae, non-vascular plants (bryophytes) as well as the oldest vascular plants (lycopods) and ferns (monilophytes) possess a unique aldehyde dehydrogenase (ALDH) gene named ALDH21, which is upregulated during dehydration. However, the gene is absent in
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge