中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

pinocembrin/infarction

鏈接已保存到剪貼板
文章臨床試驗專利權
12 結果
Oxidative stress plays an important role in the pathogenesis of ischemia/reperfusion (I/R) injury induced by cardiac dysfunction. Pinocembrin (5,7-dihydroxyflavanone) is a flavonoid found in propolis and in rhizomes of fingerroot (Boesenbergia pandurata) that is reported to have pharmacological
Previous studies indicate that myocardial infarction (MI) may contribute to atrial fibrillation (AF). Emerging evidence has shown that pinocembrin protects myocardial ischemic injury (I/R)-induced cardiac fibrosis and arrhythmias in animals via its anti-inflammatory or antioxidant activities.
BACKGROUND Cardiac infarction frequently leads to arrhythmia and ischemia/reperfusion (I/R) aggravates cardiac injury. Pinocembrin can resist cerebral ischemia and decrease cardiac infarction area. This study thus generated a rat myocardial I/R model to assess the effect on ventricular rhythm and
Acute vascular- and neuroprotective effects of pinocembrin (1) were evaluated in a rat model of focal cerebral ischemia. Focal cerebral ischemia was induced by the middle cerebral artery occlusion (MCAO) for 24 h. 5,7-Dihydroxyflavanone (compound 1; at 3, 10, or 30 mg/kg), intravenously injected at
OBJECTIVE To investigate the relationship between cerebroprotection of pinocembrin and epoxyeicosatrienoic acids (EETs) and their regulating enzyme soluble epoxide hydrolase (sEH). METHODS Rats underwent middle cerebral artery occlusion (MCAO) to mimic permanent focal ischemia, and pinocembrin was
BACKGROUND Pinocembrin is a major flavonoid molecule isolated from honey and propolis. It has versatile pharmacological and biological activities including antimicrobial, anti-inflammatory, antioxidant, and anticancer activities as well as neuroprotective effects against cerebral ischemic injury.
The aim of this study was to investigate the effects of pinocembrin on brain ischemia/reperfusion (I/R) injury and the potential involvement of autophagy activity changes in the penumbra area in the mechanisms of pinocembrin activity. Focal cerebral I/R model was induced by middle cerebral artery
Tissue-type plasminogen activator (t-PA) remains the only approved therapy for acute ischemic stroke but has a restrictive treatment time window of 4.5 hr. Prolonged ischemia causes blood-brain barrier (BBB) damage and increases the incidence of hemorrhagic transformation (HT) secondary to
Pinocembrin is one of the flavonoids at the highest concentration in propolis. In this study, we investigated the neuroprotective effect of pinocembrin on ischemia/reperfusion and ischemia/reperfusion-like insults. Protection by pinocembrin was studied at the in vivo level using a model of middle
BACKGROUND Cerebral ischemia/reperfusion (I/R) injury is a common pathological process after cardiac arrest, shock and acute cerebral infarction recanalization, which causes serious injury in brain function. Pinocembrin (Pino), a natural flavonoid at the highest concentration in propolis, exhibited
Endoplasmic reticulum stress (ER stress) is known to play a vital role in mediating ischemic reperfusion damage in brain. Our previous studies showed that pinocembrin alleviated cerebral ischemic injury in ischemia/reperfusion and vascular dementia animal models, but whether attenuation of ER
BACKGROUND Bee propolis, a mixture of the secretion from bee tongue gland and wax gland, was collected from the tree bud and barked by bees. The components were rich in terpenes, phenolics, and flavonoids, and had anti-cancer, anti-bacterial, anti-inflammatory, hepatoprotective, and neuroprotection
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge