頁 1 從 50 結果
Polyamine oxidases (PAOs) are FAD-dependent enzymes involved in polyamine (PA) catabolism. Recent studies have revealed that plant PAOs are not only active in the terminal catabolism of PAs as demonstrated for maize apoplastic PAO but also in a polyamine back-conversion pathway as shown for most
Polyamine oxidase (PAO), which requires FAD as a cofactor, functions in polyamine catabolism. Plant PAOs are classified into two groups based on their reaction modes. The terminal catabolism (TC) reaction always produces 1,3-diaminopropane (DAP), H2O2, and the respective aldehydes, while the
Effects of ethylene on free polyamine biosynthesis in rice (Oryza sativa L. cv Taichung Native 1) coleoptiles were investigated in sealed and aerobic conditions. In sealed conditions, putrescine increased significantly and coincided with ethylene accumulation. Application of ethylene in sealed
POLYAMINE OXIDASE 1 (OsPAO1), from rice (Oryza sativa), and POLYAMINE OXIDASE 5 (AtPAO5), from Arabidopsis (Arabidopsis thaliana), are enzymes sharing high identity at the amino acid level and with similar characteristics, such as polyamine specificity and pH preference; furthermore, both proteins
A highly oxidative stress-tolerant japonica rice line was isolated by T-DNA insertion mutation followed by screening in the presence of 50 mM H(2)O(2). The T-DNA insertion was mapped to locus Os09g0547500, the gene product of which was annotated as lysine decarboxylase-like protein (GenBank
CONCLUSIONS
Oryza sativa polyamine oxidase 1 back-converts spermine (or thermospermine) to spermidine. Considering the previous work, major path of polyamine catabolism in rice plant is suggestive to be back-conversion but not terminal catabolism. Rice (Oryza sativa) contains seven genes encoding
The results showed that the activities of Agrinine decarboxylase(ADC), Ornithine decarboxylase(ODC) and s-Adenosylmethionine decarboxylase(SAMDC) were increased by 165.74%, 104.60% and 89.60% in the leaves of Shan You63(Sy63) and by 59.91%, 41.30% and 23.68% in the leaves of Nancheum(NC). Only ADC
Salt-tolerant Pokkali rice plants accumulate higher polyamines (PAs) such as spermidine (Spd) and spermine (Spm) in response to salinity stress, while the sensitive cultivarM-1-48 is unable to maintain high titres of these PAs under similar conditions. The effects of the triamine Spd and the
We have shown (S. Bajaj and M.V. Rajam [1995] Plant Cell Rep 14: 717-720) that a significant reduction in morphogenetic potential occurs in callus cultures of rice (Oryza sativa L. cv TN-1) (up to 1 year old), and that plant regeneration could be improved in such cultures with spermidine treatment.
Submergence and treatment with ethylene or gibberellic acid (GA3) stimulates rapid growth in internodes of deepwater rice (Oryza sativa L. cv. "Habiganj Aman II"). This growth is based on greatly enhanced rate of cell-division activity in the intercalary meristem (IM) and on increased cell
Early-flowered superior spikelets usually exhibit a faster grain filling rate and heavier grain weight than late-flowered inferior spikelets in rice (Oryza sativa L.). But the intrinsic factors responsible for the variations between the two types of spikelets are unclear. This study investigated
We have investigated the regulation of the rice (Oryza sativa) gene OsSAMDC, which encodes an S-adenosyl-L-methionine decarboxylase (SAMDC) involved in polyamine biosynthesis. Clones representing genes differentially expressed at 5 degrees C and 20 degrees C were isolated from a cDNA library
We posed the question of whether steady-state levels of the higher polyamines spermidine and spermine in plants can be influenced by overexpression of a heterologous cDNA involved in the later steps of the pathway, in the absence of any further manipulation of the two synthases that are also
We investigated whether down-regulation of arginine decarboxylase (ADC) activity and concomitant changes in polyamine levels result in changes in the expression of downstream genes in the polyamine pathway. We generated transgenic rice (Oryza sativa L.) plants in which the rice adc gene was