中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

protoporphyrin/breast neoplasms

鏈接已保存到剪貼板
文章臨床試驗專利權
頁 1 從 80 結果
Protoporphyrin IX (PpIX) is an effective hematoporphyrin derivative, widely adopted in photodynamic therapy (PDT) and sonodynamic therapy (SDT). As a sensitizer, PpIX could significantly enhance laser light or ultrasound causing tumor cell damage in PDT/SDT studies. However, the biological function
We describe the potential of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence as a source of contrast for margin detection in commonly diagnosed breast cancer subtypes. Fluorescence intensity of PpIX in untreated and ALA-treated normal mammary epithelial and breast cancer
Proper regulation of intracellular levels of protoporphyrin IX (PPIX), the direct precursor of heme, is important for cell survival. A deficiency in ferrochelatase, which mediates the final step in heme biosynthesis, leads to erythropoietic protoporphyria (EPP), a photosensitivity syndrome caused by
Cutaneous metastasis occurs more frequently in breast cancer than in any other malignancy in women, causing significant morbidity. Photodynamic therapy (PDT), which combines a porphyrin-based photosensitizer and activation by light, can be employed for breast cancer (especially cutaneous metastases)
BACKGROUND The in vitro experiments described in this study were aimed at exploring a synergistic effect between 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX) and hypericin. In a previous study, enhanced phototoxicity was observed in a patient during a clinical study on 5-ALA-based
Combination of isoniazid (INH) and rifampicin (RFP) causes liver injury frequently among tuberculosis patients. However, mechanisms of the hepatotoxicity are not entirely understood. Protoporphyrin IX (PPIX) accumulation, as an endogenous hepatotoxin, resulting from isoniazid and rifampicin
Listeria innocua DNA binding protein from starved cells (LiDps) belongs to the ferritin family and provides a promising self-assembling spherical 12-mer protein scaffold for the generation of functional nanomaterials. We report the creation of a Gaussia princeps luciferase (Gluc)-LiDps fusion
Many tumor cells produce nitric oxide (NO) as an antiapoptotic/progrowth molecule which also promotes antiogenesis and tumor expansion. This study was designed to examine possible antagonistic effects of endogenous NO on tumor eradication by photodynamic therapy (PDT). Using COH-BR1 breast cancer
Background: Theranostic agents combine photosensitizers and contrast agents into a single unit for photothermal therapy (PTT) and magnetic resonance imaging (MRI). The possibility of treating and diagnosing malignant cancers without any
Topical or systemic administration of 5-aminolevulinic acid (ALA) and its esters results in increased production and accumulation of protoporphyrin IX (PpIX) in cancerous lesions allowing effective application of photodynamic therapy (PDT). The large concentrations of exogenous ALA practically

Calcitriol enhances the effect of photodynamic therapy in human breast cancer.

只有註冊用戶可以翻譯文章
登陸註冊
OBJECTIVE To investigate the killing effect of photodynamic therapy (PDT) mediated by hematoporphyrin derivative (HPD) on human breast cancer MCF7 and MDA-MB-231 cells in vitro. METHODS MCF7 and MDA-MB-231 breast cancer cells cultured in vitro were incubated with calcitriol (concentration of 10-8M,
Aim: Nano-5-aminolevulic acid (NanoALA)-mediated photodynamic therapy (PDT), an oil-in-water polymeric nanoemulsion of ALA, was evaluated in a murine model of breast cancer. Materials & methods: Analysis of ALA-derived protoporphyrin IX production and acute toxicity test,
Fluorescence diagnosis and photodynamic therapy with 5-aminolevulinic acid induced protoporphyrin IX are promising new options in the diagnosis and therapy of diseases in a wide spectrum of medical disciplines such as urology, dermatology, gastroenterology, surgery, neurosurgery and gynecology. The
ZnO nanorods (NRs) with high surface area to volume ratio and biocompatibility is used as an efficient photosensitizer carrier system and at the same time providing intrinsic white light needed to achieve cancer cell necrosis. In this letter, ZnO nanorods used for the treatment of breast cancer cell
Aminolevulinic acid (ALA)-mediated protoporphyrin IX (PpIX) production is being explored for tumor fluorescence imaging and photodynamic therapy (PDT). As a prodrug, ALA is converted in heme biosynthesis pathway to PpIX with fluorescent and photosensitizing properties. To better understand the role
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge