頁 1 從 165 結果
BACKGROUND
Idiopathic pulmonary fibrosis (IPF) is a chronic fatal lung disease with dismal prognosis and no cure. The potential role of the ubiquitously expressed SH2 domain-containing tyrosine phosphatase-2 (SHP2) as a therapeutic target has not been studied in IPF.
OBJECTIVE
To determine the
Idiopathic pulmonary fibrosis (IPF) is characterized by the relentless expansion of fibroblasts depositing type I collagen within the alveolar wall and obliterating the alveolar airspace. MicroRNA (miR)-29 is a potent regulator of collagen expression. In IPF, miR-29 levels are low, whereas type I
Emerging data indicate that endothelial-mesenchymal transition (EndMT) is involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF). A previous study noted that blocking the activity of protein phosphatase 2 A (PP2A) could attenuate EndMT. However, the treatment effects of PP2A inhibitors
BACKGROUND
To explore the role of protein phosphatase 2A (PP2A) in renal interstitial fibrosis by using rat model of unilateral ureteral obstructive (UUO) or cell model of human kidney proximal tubular epithelial (HK)-2 cells treated with transforming growth factor-β1 (TGF-β1).
METHODS
1) A total of
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease and considered as a cancer-like disease. The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor has drawn attention in the pathogenesis of IPF. However, the role of PTEN in phenotypic transformation
BACKGROUND
Idiopathic pulmonary fibrosis (IPF) is a progressive, fibrotic interstitial lung disease characterized by (myo)fibroblast accumulation and collagen deposition. Resistance to Fas-induced apoptosis is thought to facilitate (myo)fibroblast persistence in fibrotic lung tissues by poorly
Mitogen-activated protein kinase (MAPK) phosphatase-5 (MKP-5), is a member of the dual-specificity family of protein tyrosine phosphatases, which negatively regulates p38 MAPK and the c-Jun NH2 kinase (JNK). MKP-5-deficient mice exhibit improved muscle repair and reduced fibrosis in an
The alternative activation of M2 macrophages in the lungs has been implicated as a causative agent in pulmonary fibrosis; however, the mechanisms underlying M2 polarization are poorly characterized. In this study, we investigated the role of the ubiquitously expressed Src homology domain-containing
Protein phosphatase 1 isoforms α, β, and γ (PP1α, PP1β, and PP1γ) are highly homologous in the catalytic domains but have distinct subcellular localizations. In this study, we utilized both primary cell culture and knockout mice to investigate the isoform-specific roles of PP1s in the heart. In both
BACKGROUND
Oxygen therapy is important during the management of high-risk neonatal infants, such as those with preterm birth, low birth weight, and asphyxia. However, prolonged exposure to high oxygen concentrations can readily lead to diffuse nonspecific inflammation, which promotes airway
The purpose of this study was to analyze the cellular and noncellular components of bronchoalveolar lavage fluid (BALF) at varying times during the development of pulmonary fibrosis induced by bleomycin. Hamsters were killed and lavaged in situ following the administration of a single intratracheal
OBJECTIVE
The phosphatase SHIP1 negatively regulates the PI3K pathway, and its predominant expression within cells of the haematopoietic compartment makes SHIP1 activation a novel strategy to limit inflammatory signalling generated through PI3K. AQX-1125 is the only clinical-stage, orally
The antifibrotic effect of the mismatched double-stranded RNA, Ampligen (poly(I).poly(C12U)), was evaluated in a bleomycin-mouse model of pulmonary fibrosis. Mice received a single intratracheal dose of bleomycin (0.125 U/mouse) or saline (50 microL) at the beginning of the experiment, followed by 5
Mediators of inflammation, oxidative stress, and chemoattractants drive the hypoxemic mechanisms that accompany pulmonary fibrosis. Patients with idiopathic pulmonary fibrosis commonly have obstructive sleep apnea, which potentiates the hypoxic stimuli for oxidative stress, culminating in systemic