中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

resiniferatoxin/inflammation

鏈接已保存到剪貼板
頁 1 從 187 結果
All tumor-promoting phorbol esters induce inflammation in mouse skin. The correlation between promoting and inflammatory activities is only partial, however, indicating that only some events in inflammation may be closely coupled to the process of tumor promotion. Resiniferatoxin (RTX), an extremely
Capsaicin (CAP) and Resiniferatoxin (RTX) are vanilloid receptor agonists that can normalize Evoked Pain Scores (EPS) and Automated Dynamic Weight Bearing (ADWB) measures in murine acute inflammatory arthritis when given by intra-articular (IA) injection. To determine whether these vanilloid
The immune response against Trichinella spiralis at the intestinal level depends on the CD4+ T cells, which can both suppress or promote the inflammatory response through the synthesis of diverse cytokines. During the intestinal phase, the immune response is mixed (Th1/Th2) with the initial
TRPV1 is expressed in a subpopulation of myelinated Aδ and unmyelinated C-fibers. TRPV1+ fibers are essential for the transmission of nociceptive thermal stimuli and for the establishment and maintenance of inflammatory hyperalgesia. We have previously shown that high-power, short-duration pulses

Perineural resiniferatoxin selectively inhibits inflammatory hyperalgesia.

只有註冊用戶可以翻譯文章
登陸註冊
Resiniferatoxin (RTX) is an ultrapotent capsaicin analog that binds to the transient receptor potential channel, vanilloid subfamily member 1 (TRPV1). There is a large body of evidence supporting a role for TRPV1 in noxious-mediated and inflammatory hyperalgesic responses. In this study, we
Trigeminal ganglion C-fiber neurons bearing transient receptor potential vanilloid-1 (TRPV1) channels are selectively destroyed by resiniferatoxin (RTX), a potent capsaicin analogue. The current study assessed the effect of an RTX injection (200 ng/4 μl) into the trigeminal ganglion in inflammatory
Psychological disorders are prevalent in patients with inflammatory bowel disease; the underlying mechanisms remain unknown. We tested the hypothesis that ulcerative colitis-like inflammation induced by dextran sodium sulfate (DSS) exacerbates the ongoing spontaneous activity in colon-projecting
OBJECTIVE Capsaicin and resiniferatoxin (Sigma Chemical Co., St. Louis, Missouri) administered intravesically are attractive options for treating detrusor hyperreflexia. Because the 2 agents differ in chemical structure and relative potency, possible differences in their clinical and urodynamic
Temporomandibular disorders (TMDs) predominantly affect reproductive female patients, with pain the most frequent complaint. Although estrogens are believed to play important roles in TMD pain, the mechanism underlying modulation of TMD pain by estrogens remains largely unknown. Accumulating

Analgesic effects of capsazepine and resiniferatoxin on bone cancer pain in mice.

只有註冊用戶可以翻譯文章
登陸註冊
In the present paper, we describe the analgesic effects induced by the transient receptor potential vanilloid type 1 (TRPV1) antagonist, capsazepine, and the TRPV1 agonist, resiniferatoxin, on the thermal hyperalgesia induced by the presence of a tibial osteosarcoma or an inflammatory process in
BACKGROUND Prostatodynia remains a difficult clinical problem. Resiniferatoxin (RTX), an ultrapotent vanilloid, can produce a selective and long-lasting desensitization of nociception via C-fiber sensory neurons. Substance P (SP) and calcitonin gene-related peptide (CGRP) released from C-fibers are
BACKGROUND Injuries and/or dysfunctions in the somatosensory system can lead to neuropathic pain. Transient receptor potential vanilloid sub‑type 1 (TRPV1) play an important role in the development of allodynia and hyperalgesia following injury and the ensuing inflammatory conditions.
Cross-sensitization in the pelvis may contribute to etiology of functional pelvic pain disorders such as interstitial cystitis/bladder pain syndrome (IC/BPS). Increasing evidence suggests the involvement of transient receptor potential vanilloid 1 (TRPV1) receptors in the development of neurogenic
Transient receptor potential vanilloid receptor 1 (TRPV1) is a non-selective cation channel that is stimulated by heat (>43 °C), mechanical/osmotic stimuli, and low pH. The importance of TRPV1 in inflammatory responses has been demonstrated, whereas its participation in brains remains unclear. In

Peripheral inflammation induces up-regulation of TRPV2 expression in rat DRG.

只有註冊用戶可以翻譯文章
登陸註冊
The transient receptor potential vanilloid subfamily member 2 (TRPV2) is a cation channel activated by temperatures above 52 degrees C. To analyze the contribution of TRPV2 to the development of inflammation-induced hyperalgesia, the expression of TRPV2 in primary sensory neurons was analyzed after
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge