頁 1 從 240 結果
The S-adenosylmethionine synthetase activities of rat liver and Novikoff ascites tumor have been partially purified and characterized by chromatographic behavior, kinetic analysis, sulfhydryl dependency, and response to inhibitors. We have shown that the tumor contains a single form of the enzyme,
S-adenosylmethionine synthetase (SAMS) catalyzes the formation of S-adenosylmethionine (SAM) and is essential to normal cell function. There are two forms of SAMS, liver-specific and nonliver-specific (often referred to as "kidney"), which are products of two different genes. SAMS isoenzymes differ
Two genes (MAT1A and MAT2A) encode for the essential enzyme methionine adenosyltransferase (MAT), which catalyzes the biosynthesis of S-adenosylmethionine (SAMe), the principal methyl donor and, in the liver, a precursor of glutathione. MAT1A is expressed mostly in the liver, whereas MAT2A is widely
S-Adenosylmethionine (SAM) treatment has anti-inflammatory, cytoprotective effects against endotoxin-induced organ injury. An important component of the anti-inflammatory action of SAM involves down-regulation of the lipopolysaccharide (LPS)-induced transcriptional induction of tumor necrosis
Therapeutic targeting of metastatic breast cancer still remains a challenge as the tumor cells are highly heterogenous and exploit multiple pathways for their growth and metastatic spread that cannot always be targeted by a single-agent monotherapy regimen. Therefore, a rational approach through
OBJECTIVE
S-adenosylmethionine (SAM), the most important methyl donor in human body, is generally used to treat cholestasis in clinic. In recent years, SAM has been found to have inhibitory effects on breast cancer, liver cancer and colon carcinoma. This study was to investigate the inhibitory
This paper investigates the redistribution of metabolic fluxes in the cell with altered activity of S-adenosylmethionine decarboxylase (SAMdc, EC: 4.1.1.50), the key enzyme of the polyamine cycle and the common target for antitumor therapy. To address these goals, a stoichiometric metabolic model
Polyamine biosynthesis is controlled primarily by ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC). Antisense sequences of ODC and AdoMetDC genes were cloned into an adenoviral vector (named Ad-ODC-AdoMetDCas). To evaluate the effects of recombinant adenovirus
The antitumor activity of the S-adenosylmethionine decarboxylase (SAMDC) inhibitor SAM486A in human breast cancer cells was investigated. Our in vitro study focused on testing the effects of SAM486A on the proliferation, clonogenicity, invasiveness, cell signaling and PA levels of
S-Adenosylmethionine synthetase isoenzymes (EC 2.5.1.6) were studied in human malignant tumors xenografted into athymic nude mice and were studied in normal human and rat tissues. The tumors included 7 melanomas; 4 colon carcinomas; 3 each of mammary, cervical, and ovary carcinomas; 2 each of lung
CGP 48664A, a new S-adenosylmethionine decarboxylase inhibitor, blocks the production of spermidine and spermine, two polyamines that play critical roles in cellular proliferation. Under in vitro conditions, CGP 48664A produced cytostasis of the human prostate cancer cell lines LNCaP, LNCaP-LN3,
S-Adenosylmethionine (SAMe), the principal biological methyl donor, is synthesized from methionine and ATP in a reaction catalyzed by methionine adenosyltransferase (MAT). In mammals, two genes (MAT1A and MAT2A), encode for two homologous MAT catalytic subunits, while a third gene MAT2beta, encodes
MicroRNA-34a (miR-34a) is down-regulated in colorectal cancers (CRC) and required for interleukin-6 (IL-6)-induced CRC metastasis. Mice lacking miR-34a developed more invasive cancer in a colitis-associated cancer model. In the same model, S-adenosylmethionine (SAMe) and methylthioadenosine (MTA)
Gemcitabine (GEM) has been widely used for pancreatic cancer (PC) treatment but limited by the development of drug resistance. The agents that reverse its resistance and improve the chemo-sensitivity are urgently needed. S-Adenosylmethionine (SAM) is a precursor for polyamine biosynthesis in
S-Adenosylmethionine (SAMe), the principal methyl donor that is available as a nutritional supplement, and its metabolite methylthioadenosine (MTA) exert chemopreventive properties against liver and colon cancer in experimental models. Both agents reduced β-catenin expression on immunohistochemistry