中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

shikonin/breast neoplasms

鏈接已保存到剪貼板
頁 1 從 29 結果
BACKGROUND Recognition of a new therapeutic agent may activate an alternative programmed cell death for the treatment of breast cancer. OBJECTIVE Here, it has been tried to evaluate the effects of Shikonin, a naphthoquinone derivative of Lithospermum erythrorhizon, on the induction of necroptosis
Glutathione-S-transferase (GST) is a cytoplasmic protein responsible for detoxification, but the effect of the enzyme on cell biological events, including proliferation and migration, has never been reported. Thus, we evaluated the detoxification effect of in vitro-applied GST on cancer cell
Tamoxifen (TAM) is a cell type-specific anti-estrogen and is applied to improve the survival of patients with estrogen receptor positive (ER +) breast cancer. However, long-term TAM use can induce serious drug resistance, leading to breast cancer recurrence and death in patients.
Shikonin (SHK) has been proven to have a good anti-tumor effect. However, poor water solubility and low bioavailability limit its wide application in clinical practice. In this study, to overcome these drawbacks, RGD-modified shikonin-loaded liposomes (RGD-SSLs-SHK) were successfully prepared. It
Steroid sulfatase (STS) has an important role in regulating the biosynthesis of estrogen within breast tumors. We aimed to investigate whether shikonin, an ingredient of Lithospermum erythrorhizon, could modulate STS expression in breast cancer cells. By MTT assay, shikonin inhibited the cell
Shikonin, a natural naphthoquinone isolated from a traditional Chinese medicinal herb, has been reported to promote tumor cell death. However, there are few reports concerning its effect on metastasis-related cell invasion and migration behavior. In the present study, we investigated the effect of
Breast cancer, the most common cancer in the women, is the leading cause of death. Necrotic signaling pathways will enable targeted therapeutic agents to eliminate apoptosis-resistant cancer cells. In the present study, the effect of shikonin on the induction of cell necroptosis or apoptosis was
Shikonin (SK) has been isolated and identified as a key bioactive component in an herbal plant, Shikon (gromwell). In this study, we investigated antiestrogen activity of SK in breast cancer cells. In human breast cancer cells, we observed that treatment with SK inhibits tumor cell growth in
Shikonin, isolated from the plant Lithospermum erythrorhizon Sieb. Et Zucc, has been reported to induce apoptosis in several tumor cells. However, such effect of shikonin on human breast cancer cells has not been reported. Thus, in the present study, whether shikonin could induce MCF-7 human breast
Shikonin, a small-molecule natural product which inhibits the activity of pyruvate kinase M2 (PKM2), has been studied as an anti-cancer drug candidate in human cancer models. Here, our results demonstrate that shikonin is able to sensitize human breast cancer cells to chemotherapy by paclitaxel
Shikonin is a naphthoquinone isolated from the traditional Chinese medicine Lithospermum. It has been used in the treatment of various tumors. However, the effects of shikonin on such diseases have not been fully elucidated. In the present study, we detected the exosome release of a breast cancer
The Chinese traditional medicine Shikonin is an ideal drug due to its multiple targets to tumor cells. But in clinics, improving its aqueous solubility and tumor accumulation is still a challenge. Herein, a copolymer with tunable poly(N-isopropylacrymaide) and polylactic acid block lengths is
Triple-negative breast cancer (TNBC) is heterogeneous disease with a poor prognosis. It is therefore important to explore novel therapeutic agents to improve the clinical efficacy for TNBC. The inosine 5'-monophosphate dehydrogenase 2 (IMPDH2) is a rate-limiting enzyme in the de novo synthesis of
Resistance to cell death and reprogramming of metabolism are important in neoplastic cells. Increased resistance to apoptosis and recurrence of tumors are the major roadblocks to effective treatment of triple negative breast cancer. It has been thought that execution of necroptosis involves ROS

ER-mediated anti-tumor effects of shikonin on breast cancer.

只有註冊用戶可以翻譯文章
登陸註冊
Estrogen receptor (ER) is expressed in most Breast cancer (BC) patients. G protein-coupled estrogen receptor (GPER), which is a membrane-bound estrogen receptor, is associated with the tumor development and progression in BC. Shikonin (SK) is a natural compound that is known to have anti-tumor
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge