頁 1 從 87 結果
Polyamines were implicated as either neurotoxic or neuroprotective in several models of stroke. Spermine augments the excitotoxicity mediated by the N-methyl-D-aspartate (NMDA) receptor because this receptor is activated at micromolar spermine concentrations. However, at higher concentrations,
Pulmonary vascular remodeling is a significant pathological feature of hypoxia-induced pulmonary hypertension (HPH), while pulmonary artery smooth muscle cell (PASMC) proliferation plays a leading role in pulmonary vascular remodeling. Spermine (Sp), a polyamine, plays a critical role in periodic
Hypoxia-inducible factor-1 (HIF-1) is a master regulator of oxygen homeostasis that controls the expression of genes encoding proteins that play key roles in angiogenesis, erythropoiesis, and glucose/energy metabolism. The stability of the HIF-1alpha subunit is regulated by ubiquitination and
This study tests the hypothesis that brain tissue hypoxia results in modification of spermine-dependent activation of the cerebral N-methyl-D-aspartate (NMDA) receptor ion-channel in newborn piglet brains and that pretreatment with N(omega)-nitro-L-arginine (NNLA), an inhibitor of nitric oxide
Polyamine levels are elevated in the organs and tissues of cancer patients due to increased synthesis and active intercellular transport in cancer cells. Because increased polyamine levels are associated with poor prognosis, the effect of polyamines on the malignant potential of cancer cells was
Myocardial infarction (MI) is associated with a high mortality rate, which is attributed to the effects of myocyte loss that occurs as a result of ischemia-induced cell death. Very few therapies can effectively prevent or delay the effects of ischemia. Polyamines (PAs) are polycations required for
Purpose: Acrolein, a highly reactive unsaturated aldehyde, is known to facilitate glial cell migration, one of the pathological hallmarks in diabetic retinopathy. However, cellular mechanisms of acrolein generation in retinal glial cells
Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric transcription factor that functions as a master regulator of oxygen homeostasis. The HIF-1alpha subunit is subjected to O(2)-dependent prolyl hydroxylation leading to ubiquitination by the von Hippel-Lindau protein (VHL)-Elongin C
1 Intravenous injection of rabbits with the polyamines spermine (10-30 mg/kg) and spermidine (50-90 mg/kg) produced hyperglycaemia.2 Given by intraventricular injection, spermine and spermidine gave rise to hyperglycaemia in doses 250-500 times smaller than those effective intravenously.3
Polyamines modulate many biological functions. Here we report a novel inhibitory modulation by spermine of catecholamine release by the rat carotid body and have identified the molecular mechanism underpinning it. We used molecular (RT-PCR and confocal microscopy) and functional (i.e.,
The cellular responses to hypoxia are poorly understood. To test the hypothesis that ornithine decarboxylase (ODC; L-ornithine carboxy-lyase; EC 4.1.1.17) activity and polyamine concentrations change in response to acute hypoxia, we performed the following studies. Pregnant Sprague-Dawley rats
An increase in intracellular Ca²(+) is crucial to O₂ sensing by the carotid body. Polyamines have been reported to modulate both the extracellular Ca²(+)-sensing receptor (CaR) and voltage-gated Ca²(+) channels in a number of cell types. Using RT-PCR and immunohistochemistry, the predominant
Spermidine/spermine N(1)-acetyltransferase 1 (Ssat1) is a key enzyme in the polyamine interconversion pathway, which maintains polyamine homeostasis. In addition, mammalian Ssat1 is also involved in many physiological and pathological events such as hypoxia, cell migration, and carcinogenesis. Using
OBJECTIVE
To investigate the role and mechanism of mitochondrial calcium uniporter (MCU) in myocardial hypoxia/reoxygenation injury.
METHODS
Isolated rat hearts were perfused with Langendorff apparatus. The hypoxia/reoxygenation injury was achieved by ligation of left anterior coronary artery for 30
The effect of maternal hypoxia on the modification of the fetal brain cell membrane N-methyl-D-aspartate (NMDA) receptor and its modulatory sites was investigated. Experiments were conducted in pregnant guinea pigs of 60 days of gestation. Guinea pig fetuses were exposed to maternal hypoxia (FiO2 =