中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

thiamine/zea mays

鏈接已保存到剪貼板
文章臨床試驗專利權
13 結果
The pool of thiamine diphosphate (TDP), available for TDP-dependent enzymes involved in the major carbohydrate metabolic pathways, is controlled by two enzyme systems that act in the opposite directions. The thiamine pyrophosphokinase (TPK) activates thiamine into TDP and the numerous phosphatases
A thiamine biosynthesis gene, thi3, from maize Zea mays has been identified through cloning and sequencing of cDNA and heterologous overexpression of the encoded protein, THI3, in Escherichia coli. The recombinant THI3 protein was purified to homogeneity and shown to possess two essentially
The responses of plants to abiotic stress involve the up-regulation of numerous metabolic pathways, including several major routes that engage thiamine diphosphate (TDP)-dependent enzymes. This suggests that the metabolism of thiamine (vitamin B1) and its phosphate esters in plants may be modulated
In the summer of 1983, immature embryos from 101 selfed inbred lines and germplasm stocks of Zea mays L. were examined for their ability to produce callus cultures capable of plant regeneration (regenerable cultures) using a medium with which some limited success had previously been obtained.
The basic characteristics of thiamine metabolism in germinating seeds of maize (Zea mays), oat (Avena sativa), faba bean (Vicia faba) and garden pea (Pisum sativum) are presented with a special emphasis of a possible thiamine storage function of seed thiamine-binding proteins (TBPs). Seeds were
Thiamine is known to be an important compound in human diet and it is a cofactor required for vital metabolic processes such as acetyl-CoA biosynthesis, amino acid biosynthesis, Krebs and Calvin cycle. Besides that, thiamine has been shown to be involved in plant protection against stress. In this

A maize thiamine auxotroph is defective in shoot meristem maintenance.

只有註冊用戶可以翻譯文章
登陸註冊
Plant shoots undergo organogenesis throughout their life cycle via the perpetuation of stem cell pools called shoot apical meristems (SAMs). SAM maintenance requires the coordinated equilibrium between stem cell division and differentiation and is regulated by integrated networks of gene expression,

Pyruvate Decarboxylase from Zea mays L. : 2. Examination of Hysteretic Kinetics.

只有註冊用戶可以翻譯文章
登陸註冊
A significant lag phase was observed in the accumulation of product for the reaction catalyzed by pyruvate decarboxylase (PDC) purified from mature maize kernels. The effects of pH, pyruvate, potassium chloride, PDC concentration, and Mg(2+)-thiamine pyrophosphate upon this lag and upon the observed
The pyruvate dehydrogenase complex was partially purified and characterized from etiolated maize (Zea mays L.) shoot mitochondria. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed proteins of 40, 43, 52 to 53, and 62 to 63 kD. Immunoblot analyses identified these proteins
Two groups of weanling male Sprague-Dawley rats fed a diet supplemented with either 0.6 or 6 retinol equivalents/g diet were each separated into three further groups receiving 300 mumol 2,2',4,4',5,5'-hexachlorobiphenyl/kg body weight, 300 mumol 3,3',4,4'-tetrachlorobiphenyl kg/body weight or

Structure and properties of an engineered transketolase from maize.

只有註冊用戶可以翻譯文章
登陸註冊
The gene specifying plastid transketolase (TK) of maize (Zea mays) was cloned from a cDNA library by southern blotting using a heterologous probe from sorghum (Sorghum bicolor). A recombinant fusion protein comprising thioredoxin of Escherichia coli and mature TK of maize was expressed at a high
Friable, embryogenic maize (Zea mays L.), inbred line A188, callus was established and maintained for more than one year without apparent loss of friability or embryogenic potential. Embryoid development was abundant in these cultures and plants were easily regenerated. Frequencies of friable-callus
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge