中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

wallerian degeneration/protease

鏈接已保存到剪貼板
文章臨床試驗專利權
頁 1 從 27 結果
After damage, axons in the peripheral nervous system (PNS) regenerate and regrow following a process termed Wallerian degeneration, but the regenerative process is often incomplete and usually the system does not reach full recovery. Key steps to the creation of a permissive environment for axonal
Peripheral neuropathies and Wallerian degeneration share a number of pathological features; the most prominent of which is axonal degeneration. We asked whether common pathophysiologic mechanisms are involved in these 2 disorders by directly comparing in vitro models of axonal degeneration after
Peripheral nerve injury causing Wallerian degeneration results in endoneurial remodeling initiated by an increase in tumor necrosis factor-alpha (TNF), which is activated from its precursor by extracellular proteases of the matrix metalloproteinase (MMP) family. We used immunohistochemistry to
The fibrinolytic activity of blood is caused by plasminogen activators (PA) converting plasminogen to plasmin, the active fibrinolytic protease. PA activity in rat neural tissues was studied by Todd's fibrin slide technique. Cryostat sections overlayed with a film of plasminogen and fibrin were
Peripheral nerve injury results in a series of events culminating in degradation of the axonal cytoskeleton (Wallerian degeneration). In the time period between axotomy and cytoskeletal degradation (24-48 h in rodents), there is calcium entry and activation of calpains within the axon. The precise
Accumulating evidence indicates that neurite degeneration occurs via a distinct mechanism from somal death programs. We have previously shown that neuritic ATP level in sympathetic neurons decreases, whereas somal ATP level remains unaltered during degeneration caused by the microtubule-disrupting
The selective degeneration of an axon, without the death of the parent neuron, can occur in response to injury, in a variety of metabolic, toxic, and inflammatory disorders, and during normal development. Recent evidence suggests that some forms of axon degeneration involve an active and regulated
In both the central nervous system (CNS) and peripheral nervous system (PNS), transected axons undergo Wallerian degeneration. Even though Augustus Waller first described this process after transection of axons in 1850, the molecular mechanisms may be shared, at least in part, by many human
In the C57BL/Ola (Ola) mouse strain there is a marked slowing of axonal disintegration during Wallerian degeneration. The locus of the mutation controlling this phenomenon (slow Wallerian degeneration--Wlds) has been mapped to chromosome 4, and its protective effect decreases with advancing age.
Axon or dendrite degeneration involves activation of the ubiquitin-proteasome system, failure to maintain neuritic ATP levels, microtubule fragmentation and a mitochondrial permeability transition that occur independently of the somal death programs. To gain further insight into the neurite

Distribution of calpains I and II in rat brain.

只有註冊用戶可以翻譯文章
登陸註冊
Calpains I and II are calcium-dependent proteases that have been implicated in several aspects of brain function, including neurofilament turnover, Wallerian degeneration, and excitatory synaptic transmission. In this study, specific affinity-purified antibodies against each of the enzymes were used

Calcium-mediated degeneration of the axonal cytoskeleton in the Ola mouse.

只有註冊用戶可以翻譯文章
登陸註冊
The C57BL/Ola (Ola) mouse is a mutant substrain in which transected axons undergo very slow Wallerian degeneration. Because axonal degradation during Wallerian degeneration is calcium dependent, we tested whether Ola axons are susceptible to calcium-mediated axonal degeneration by comparing
The biological basis for the phenotype of delayed Wallerian degeneration in the WLDs mouse has yet to be elucidated, although it is known that the characteristic is intrinsic to the axon. Previous data suggested that nerves from the WLD(S) are relatively resistant to proteolytic degradation. We

Inhibition of neural and muscle degeneration after epineural neurorrhaphy.

只有註冊用戶可以翻譯文章
登陸註冊
Investigations were undertaken on the regeneration of transected rat sciatic nerves. The ability of the protease inhibitor leupeptin to inhibit wallerian degeneration and muscle atrophy was evaluated. After transection of a sciatic nerve and immediate neurorrhaphy, animals were treated with

Calpain inhibitor 2 prevents axonal degeneration of opossum optic nerve fibers.

只有註冊用戶可以翻譯文章
登陸註冊
The ultrastructural change that characterizes the onset of Wallerian degeneration is the disintegration of axoplasmic microtubules and neurofilaments, which are converted into an amorphous and granular material, followed by myelin breakdown. The mechanism underlying such processes is an increase in
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge