中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

wild/glycine max

鏈接已保存到剪貼板
文章臨床試驗專利權
頁 1 從 272 結果

Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta.

只有註冊用戶可以翻譯文章
登陸註冊
During a study of endophytic nitrogen-fixing bacteria present in the wild rice species Oryza alta, eight novel isolates were obtained from surface-sterilized roots and classified in the genus Rhizobium on the basis of almost-complete 16S rRNA gene sequence analysis. These strains can nodulate
A combined proteomic approach was applied for the separation, identification, and comparison of two major storage proteins, beta-conglycinin and glycinin, in wild (Glycine soja) and cultivated (Glycine max) soybean seeds. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) with three
The metabolic profiles and composition of storage reserves of agricultural crop seeds are strongly regulated by heritable and environmental factors. Yet, very little is known about the genetic and environmental determinants of adaptive metabolic variation amongst wild type as well as transgenic seed

Contrasting Effects of Wild Arachis Dehydrin Under Abiotic and Biotic Stresses.

只有註冊用戶可以翻譯文章
登陸註冊
Plant dehydrins (DNHs) belong to the LEA (Late Embryogenesis Abundant) protein family and are involved in responses to multiple abiotic stresses. DHNs are classified into five subclasses according to the organization of three conserved motifs (K-; Y-; and S-segments). In the present study, the DHN

Occurrence of Cowpea Stunt Disease Causing Viruses on Wild Bean in Arkansas.

只有註冊用戶可以翻譯文章
登陸註冊
Cucumber mosaic cucumovirus (CMV) and blackeye cowpea mosaic potyvirus (BlCMV) interact synergistically in dually infected plants to cause cowpea stunt disease (1,2). During a July 1996 survey of cowpea stunt-affected fields in the Arkansas River valley, several wild bean (Strophostyles helvola L.
Agricultural production is becoming increasingly dependent on the environmental factors that alter soil properties, plant productivity, and product quality. Environment pollution caused by heavy metals because of human activities are among the most dangerous pollutants on the biosphere. Here, we
The exploitation of wild perennial species of subgenus Glycine has been formidable in soybean breeding programs because of extremely poor crossability and an early pod abortion. The combination of gibberellic acid application to hybridized gynoecia and improved seed culture media formulations

The wild side of a major crop: soybean's perennial cousins from Down Under.

只有註冊用戶可以翻譯文章
登陸註冊
The accumulation of over 30 years of basic research on the biology, genetic variation, and evolution of the wild perennial relatives of soybean (Glycine max) provides a foundation to improve cultivated soybean. The cultivated soybean and its wild progenitor, G. soja, have a center of origin in
It was previously reported that the hypernodulating soybean (Glycine max [L.] Merr.) mutants, derived from the cultivar Williams, had higher root concentration of isoflavonoid compounds (daidzein, genistein, and coumestrol) than did Williams at 9 to 12 days after inoculation with Bradyrhizobium
Clarification of the metabolic mechanisms underlying salt stress responses in plants will allow further optimization of crop breeding and cultivation to obtain high yields in saline-alkali land. Here, we characterized 68 differential metabolites of cultivated soybean (Glycine max) and wild soybean
Cultivated soybean (Glycine max) is a major agricultural crop that provides a crucial source of edible protein and oil. Decreased amounts of saturated palmitic acid and increased amounts of unsaturated oleic acid in soybean oil are considered optimal for human cardiovascular health and therefore
NADH:nitrate reductase (EC 1.6.6.1) and NAD(P)H:nitrate reductase (EC 1.6.6.2) were purified from wild-type soybean (Glycine max [L.] Merr., cv Williams) and nr(1)-mutant soybean plants. Purification included Blue Sepharose- and hydroxylapatite-column chromatography using acetone powders from fully
The nr(1) soybean (Glycine max [L.] Merr.) mutant does not contain the two constitutive nitrate reductases, one of which is responsible for enzymic conversion of nitrite to NO(x) (NO + NO(2)). It was tested for possible nonenzymic NO(x) formation and evolution because of known chemical reactions
The cultivation of soybean plants is one of the most important crop production sectors in the world. Isoflavones are an important defence against pathogens in soybeans. The aim of the present study was to analyse isoflavone biosynthesis in wild and cultivated soybeans grown in the field conditions
Soybean (Glycine max [L.] Merr.) leaves have been shown to contain three forms of nitrate reductase (NR). Two of the forms, which are present in leaves of wild-type (cv. Williams) plants grown in the absence of NO(3) (-), are termed constitutive and designated c(1)NR and c(2)NR. The third form,
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge