English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

lotaustralin/lotus

The link is saved to the clipboard
ArticlesClinical trialsPatents
6 results

Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus.

Only registered users can translate articles
Log In/Sign up
Lotus japonicus was shown to contain the two nitrile glucosides rhodiocyanoside A and rhodiocyanoside D as well as the cyanogenic glucosides linamarin and lotaustralin. The content of cyanogenic and nitrile glucosides in L. japonicus depends on plant developmental stage and tissue. The cyanide

Biosynthesis of rhodiocyanosides in Lotus japonicus: rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile.

Only registered users can translate articles
Log In/Sign up
Lotus japonicus contains the two cyanogenic glucosides, linamarin and lotaustralin, and the non cyanogenic hydroxynitriles, rhodiocyanoside A and D, with rhodiocyanoside A as the major rhodiocyanoside. Rhodiocyanosides are structurally related to cyanogenic glucosides but are not cyanogenic. In

Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism.

Only registered users can translate articles
Log In/Sign up
Cyanogenesis, the release of hydrogen cyanide from damaged plant tissues, involves the enzymatic degradation of amino acid-derived cyanogenic glucosides (alpha-hydroxynitrile glucosides) by specific beta-glucosidases. Release of cyanide functions as a defense mechanism against generalist herbivores.

The evolutionary appearance of non-cyanogenic hydroxynitrile glucosides in the Lotus genus is accompanied by the substrate specialization of paralogous β-glucosidases resulting from a crucial amino acid substitution.

Only registered users can translate articles
Log In/Sign up
Lotus japonicus, like several other legumes, biosynthesizes the cyanogenic α-hydroxynitrile glucosides lotaustralin and linamarin. Upon tissue disruption these compounds are hydrolysed by a specific β-glucosidase, resulting in the release of hydrogen cyanide. Lotus japonicus also produces the

The beta-glucosidases responsible for bioactivation of hydroxynitrile glucosides in Lotus japonicus.

Only registered users can translate articles
Log In/Sign up
Lotus japonicus accumulates the hydroxynitrile glucosides lotaustralin, linamarin, and rhodiocyanosides A and D. Upon tissue disruption, the hydroxynitrile glucosides are bioactivated by hydrolysis by specific beta-glucosidases. A mixture of two hydroxynitrile glucoside-cleaving beta-glucosidases

The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles.

Only registered users can translate articles
Log In/Sign up
Zygaena larvae sequester the cyanogenic glucosides linamarin and lotaustralin from their food plants (Fabaceae) as well as carry out de novo biosynthesis of these compounds. In this study, Zygaena filipendulae were reared on wild-type Lotus corniculatus and wild-type and transgenic L. japonicus
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge