Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Pharmacology 2007-Jul

Antinociceptive action of myricitrin: involvement of the K+ and Ca2+ channels.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Flavia Carla Meotti
Roselei Fachinetto
Liana C Maffi
Fabiana Cristina Missau
Moacir Geraldo Pizzolatti
João B T Rocha
Adair R S Santos

Parole chiave

Astratto

The present study was designed to investigate the mechanisms involved in the antinociception afforded by myricitrin in chemical models of nociception in mice. Myricitrin given by intrathecal (i.t.) or intracerebroventricular (i.c.v.) route produced dose-related antinociception when evaluated against acetic acid-induced visceral pain in mice. In addition, the intraperitoneal administration of myricitrin caused significant inhibition of biting behaviour induced by i.t. injection of glutamate, substance P, capsaicin, interleukin 1 beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha). The antinociception caused by myricitrin in the acetic acid test was fully prevented by i.t. pre-treatment with pertussis toxin, a Gi/o protein inactivator, and by i.c.v. injection of calcium chloride (CaCl(2)). In addition, the i.t. pre-treatment of mice with apamin, a blocker of small (or low)-conductance calcium-gated K(+) channels and tetraethylammonium, a blocker of voltage-gated K(+) channels significantly reversed the antinociception induced by myricitrin. The charybdotoxin, a blocker of large (or fast)-conductance calcium-gated K(+) channels and glibenclamide, a blocker of the ATP-gated K(+) channels had no effect on myricitrin-induced antinociception. Calcium uptake analysis revealed that myricitrin inhibited (45)Ca(2+) influx under a K(+)-induced depolarization condition. However, calcium movement was modified in a non-depolarizing condition only when the highest concentration of myricitrin was used. In summary, our findings indicate that myricitrin produces consistent antinociception in chemical models of nociception in mice. These results clearly demonstrate an involvement of the Gi/o protein dependent mechanism on antinociception caused by myricitrin. The opening of voltage- and small-conductance calcium-gated K(+) channels and the reduction of calcium influx led to the antinociceptive of myricitrin.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge