Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular and chemical neuropathology 1992-Jun

Polyamine metabolism in different pathological states of the brain.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
W Paschen

Parole chiave

Astratto

Biosynthesis of the polyamines spermidine and spermine and their precursor putrescine is controlled by the activity of the two key enzymes ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC). In the adult brain, polyamine synthesis is activated by a variety of physiological and pathological stimuli, resulting most prominently in an increase in ODC activity and putrescine levels. The sharp rise in putrescine levels observed following severe cellular stress is most probably the result of an increase in ODC activity and decrease in SAMDC activity or an activation of the interconversion of spermidine into putrescine via the enzymes spermidine N-acetyltransferase and polyamine oxidase. Spermidine and spermine levels are usually less affected by stress and are reduced in severely injured areas. Changes of polyamine synthesis and metabolism are most pronounced in those pathological conditions that induce cell injury, such as severe metabolic stress, exposure to neurotoxins or seizure. Putrescine levels correlate closely with the density of cell necrosis. Because of the close relationship between the extent of post-stress changes in polyamine metabolism and density of cellular injury, it has been suggested that polyamines play a role in the manifestation of structural defects. Four different mechanisms of polyamine-dependent cell injury are plausible: (1) an overactivation of calcium fluxes and neurotransmitter release in areas with an overshoot in putrescine formation; (2) disturbances of the calcium homeostasis resulting from an impairment of the calcium buffering capacity of mitochondria in regions in which spermine levels are reduced; (3) an overactivation of the NMDA receptor complex caused by a release of polyamines into the extracellular space during ischemia or after ischemia and prolonged recirculation in the tissue surrounding severely damaged areas; (4) an overproduction of hydrogen peroxide resulting from an activation of the interconversion of spermidine into putrescine via the enzymes spermidine N-acetyltransferase and polyamine oxidase. Insofar as a sharp activation of polyamine synthesis is a common response to a variety of physiological and pathological stimuli, studying stress-induced changes in polyamine synthesis and metabolism may help to elucidate the molecular mechanisms involved in the development of cell injury induced by severe stress.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge