A comparison of lectin binding in rat and human peripheral nerve.
Palavras-chave
Resumo
Eleven different fluorescein- or peroxidase-conjugated lectins with different sugar-binding affinities were employed to analyze and compare glycoconjugates of rat and human peripheral nerves at the light microscopic level. A majority of lectins showed a distinct binding pattern in different structures of the nerve. Lectin binding was similar but not identical in rat and human nerves. Limulus polyhemus agglutinin did not stain any structures in rat or human nerves. In both species, all other lectins bound to the perineurium. Perineurial staining was intense with Canavalia ensiformis (Con A), Triticum vulgaris (WGA), Maclura pomifera (MPA); moderate with Glycine max (SBA), Griffonia simplicifolia-I (GS-I) and GS-II; weak with Ulex europaeus (UEA), Dolichos biflorus (DBA), and Ricinus communis (RCA). In the endoneurium of both species, ConA staining was intense, MPA and WGA moderate, SBA, GS-II, PNA, and RCA weak, and UEA and DBA absent. Interestingly, GS-I stained rat but not human endoneurium. Most lectins bound to blood vessels. GS-I bound to rat but not human, whereas UEA bound to human but not rat vessels. The results show that lectins can be used to reveal heterogeneity in sugar residues of glycoconjugates within neural and vascular components of nerves. They may therefore be potentially useful in detecting changes in glycoconjugates during nerve degeneration and subsequent regeneration after trauma or in pathological states.