Disorders of membrane channels or channelopathies.
Palavras-chave
Resumo
OBJECTIVE
To review the structure and function of membrane ion channels with special emphasis on inherited nervous system channel disorders or channelopathies.
RESULTS
Channels are pores in the cell membrane. Through these pores ions flow across the membrane and depolarize or hyperpolarize the cell. Channels can be classified into 3 types: non-gated, directly gated and second messenger gated channels. Among the important directly gated channels are voltage gated (Na(+), K(+), Ca(2+), Cl(-)) and ligand gated (ACh, Glutamate, GABA, Glycine) channels. Channels are macromolecular protein complexes within the lipid membrane. They are divided into distinct protein units called subunits. Each subunit has a specific function and is encoded by a different gene. The following inherited channelopathies are described. (1) Sodium channelopathies: familial generalized epilepsy with febrile seizures plus, hyperkalemic periodic paralysis, paramyotonias, hypokalemic periodic paralysis; (2) potassium channelopathies: benign infantile epilepsy, episodic ataxia type 1; (3) calcium channelopathies: episodic ataxia type 2, spinocerebellar ataxia type 6, familial hemiplegic migraine, hypokalemic periodic paralysis, central core disease, malignant hyperthermia syndrome, congenital stationary night blindness; (4) chloride channelopathies: myotonia congenitas; (5) ACh receptor channelopathies: autosomal dominant frontal lobe nocturnal epilepsy, congenital myasthenic syndromes; (6) glycine receptor channelopathies: hyperekplexia.
CONCLUSIONS
Studies of human inherited channelopathies have clarified the functions of many ion channels. More than one gene may regulate a function in a channel, thus different genetic mutations may manifest with the same disorder. The complex picture of the genetic and molecular structures of channels will require frequent updates.