中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

glyoxylate reductase/cotyledon

链接已保存到剪贴板
文章临床试验专利权
4 结果
The development of NADP- and NAD-dependent glyceraldehyde 3-phosphate dehydrogenase and NADH-specific glyoxylate reductase was followed in Sinapis alba cotyledons grown in the dark or under continuous red and far red light. All three enzyme activities are promoted by light, continuous far red light
Ammonium sulfate chromatography has been employed to separate glyceraldehyde 3-phosphate dehydrogenases (GPD) of Sinapis alba cotyledons of various developmental stages. Cotyledons of dark-grown seedlings possess one major NAD-specific enzyme designated NAD-GPD I. Irradiation with continuous far red

Isolation of Plastids from Sunflower Cotyledons during Germination.

只有注册用户可以翻译文章
登陆注册
Plastids from cotyledons of sunflower (Helianthus annus L.) seedlings, germinated in the dark or in the light, were isolated by isopycnic sucrose density gradient centrifugation. At all stages of development the whole plastids contained triose phosphate isomerase, NADPH-glyoxylate reductase, and
Benzyladenine (BA) increases the rate of expansion of dark-grown sunflower (Helianthus annuus L.) cotyledons. The hormone slightly enhances the development of the two glyoxysomal enzymes, isocitrate lyase and malate synthetase, during the first 3 days of germination and greatly accelerates their
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge